Towards Effective Sim-to-Real Policy Transfer via
Sim-to-Sim Transfer on Quadruped Robots

Abstract—Reinforcement learning (RL) has enabled
quadruped robots to acquire agile locomotion behaviors
in simulation, but transferring these controllers across domains
remains challenging due to discrepancies in dynamics, contact
modeling, and actuation. While most prior work focuses on
simulation-to-real (sim-to-real) transfer, simulation-to-simulation
(sim-to-sim) transfer provides a controlled setting for isolating
engine-level differences without the confounding factors of
sensor noise or unmodeled real-world effects. In this work,
we study the transfer of a PPO-trained locomotion policy
for the ANYmal-C quadruped from IsaacLab (PhysX) to
MuJoCo. We characterize how differences in constraint solvers,
contact formulations, and actuator dynamics manifest during
locomotion by analyzing discrepancies in base motion, joint
trajectories, joint velocities, and contact forces over 25-second
rollouts. Our results show that the controller transfers stably
and produces qualitatively similar gaits in both simulators,
yet exhibits systematic joint-space deviations and substantial
differences in contact force distribution—particularly in hip
flexion/extension joints and symmetric limb pairs. We open
source our implementation and evaluation pipeline for future
research in sim-to-sim and sim-to-real transfer.

Index Terms—sim-to-real robotics, sim-to-sim robotics, trans-
fer learning, reinforcement learning, quadrupeds

I. INTRODUCTION

Reinforcement learning (RL) has enabled impressive loco-
motion behaviors in simulation. However, policies often fail
to generalize from simulation to the real-world. A central
challenge in robotics is the simulation-to-reality (sim-to-real)
gap: the performance of a robot in simulation often fails to
match its behavior in the physical world. This is due to a
number of factors including inaccuracies in modeling contact
dynamics, sensing, actuation, and environmental disturbances.
Control policies learned in simulation are particularly sensi-
tive to these discrepancies, since even a small difference in
dynamics or timing can accumulate into large deviations in
locomotion capability.

While sim-to-real transfer has received considerable study,
a related and important problem is simulation-to-simulation
(sim-to-sim) transfer, where a policy trained in one simulator is
executed in another. Differences in physics engines responsible
for the contact solvers, actuator models, integration schemes,
and numerical tolerances, can lead to divergence in the policy
behavior even when the underlying robot model is identical.
Studying sim-to-sim transfer offers a controlled setting for
diagnosing these differences and failure modes without the
complexity and cost of hardware experiments.

In this paper, we study the transfer of a learned locomotion
policy for the ANYmal-C quadruped, shown in Figure [T} from

Fig. 1. The AnyMal-C quadruped robot asset from Nvidia’s IsaacSim/Isaa-
cLab.

IsaacLab (based on the NVIDIA PhysX engine) to MuJoCo.
This setting isolates the effects of engine-level physics dis-
crepancies without the confounding factors of sensing noise
or unmodeled real-world dynamics, providing a clean and
reproducible benchmark for cross-simulator policy robustness.
We first quantify the degradation in performance that occurs
under direct transfer and then perform a systematic analysis
over contact and actuator parameters.

We make two primary contributions: (1) a detailed charac-
terization of sim-to-sim transfer of a learned locomotion policy
between IsaacL.ab and MuJoCo for the ANYmal-C quadruped,
analyzing discrepancies in base motion, joint behavior, and
contact forces; and (2) an open-source, end-to-end pipeline
for training, transferring, and evaluating locomotion policies
across the two physics engines.

II. RELATED LITERATURE

Across both sim-to-sim and sim-to-real settings, prior work
falls broadly into two families: (i) robust training, which seeks
to make policies insensitive to model variations through ran-
domization or improved simulation fidelity, and (ii) adaptation,
which adjusts policies or models at deployment to compensate
for residual mismatches. These approaches frame the land-
scape in which sim-to-sim transfer of quadruped locomotion
policies can be analyzed and improved.

Robust training via randomization and improved simu-
lation: Domain and dynamics randomization aim to make
policies invariant (or at least robust) to a wide range of
possible environment parameters by randomizing physical and
perceptual properties during training. Dynamics randomization
has been shown to produce policies that tolerate significant

mismatch between training and deployment dynamics and was
demonstrated on robotic manipulation tasks and locomotion.
(1) provide an extensive study of dynamics randomization for
transferring control policies, and (2) demonstrate how system
identification combined with randomization can enable agile
quadruped locomotion to transfer from sim to hardware.

Tobin et al. (3) show that aggressive domain randomization
on the visual channel, randomizing textures, lighting, distrac-
tors, and camera pose in a low-fidelity simulator, can yield
object detectors that transfer directly to real RGB images with
centimeter-level accuracy, enabling closed-loop grasping with
no real-image pretraining. Their results support the broader
view that training over a deliberately over-dispersed family of
simulated environments can compensate for large appearance
and modeling gaps, a principle we exploit in our use of domain
randomization for training the low-level quadruped locomotion
policy.

System identification and adaptive simulation tuning:
Rather than relying solely on broad randomization, a comple-
mentary strategy is to estimate simulator parameters (some-
times called system identification or sysID) and adapt the
simulation so that it better matches the target dynamics.
Several works formulate closed-loop pipelines that use real
(or target simulator) rollouts to adapt simulator parameter
distributions or to select simulation instances that reduce the
gap to the target domain. Such real-to-sim-to-real and adaptive
randomization schemes frequently outperform naive random-
ization when a modest amount of target data is available (2} 4)).

Residual and action-space adaptation methods: A large
line of work studies augmenting classical controllers or pre-
trained policies with learned residuals that correct model
mismatch. Residual methods are attractive for sim-to-sim or
sim-to-real transfer because they are sample-efficient: a low-
capacity residual model can be fit using a small calibration
dataset in the target domain to correct systematic errors in
forces/torques or action semantics (5)). Representative robotics
studies formalize residual reinforcement learning and demon-
strate improved transfer in contact-rich tasks (5). In sim-to-sim
transfer settings, where the policy’s structure remains valid
but joint-level biases and contact-phase discrepancies emerge,
residual action learning may offer a lightweight mechanism
for correcting systematic errors without retraining the main
controller policy.

Meta-learning and fast adaptation: Model-Agnostic
Meta-Learning (MAML) introduces a general and gradient-
based approach for learning policies that can rapidly adapt to
new tasks using only a small number of gradient updates and
limited data (6). Rather than training a single robust policy,
MAML trains an initialization of policy parameters that is
explicitly optimized so that subsequent fine-tuning is sample-
efficient across variations in task dynamics or objectives. In
the context of simulation-to-simulation transfer, meta-learning
offers a mechanism to adapt a locomotion controller to dis-
crepancies introduced by varying actuator models, contact
dynamics, or integrators, while requiring far fewer target-
domain rollouts than training from scratch. Meta-learned poli-

cies substantially outperform conventional pretraining when
adapting across related RL tasks, underscoring the relevance
of meta-initialization approaches for cross-sim transfer of
quadruped locomotion policies (6)).

Positioning of sim-to-sim work: Although many of the
techniques above were developed for sim-to-real transfer, the
same mechanisms are relevant to sim-to-sim transfer (e.g.,
IsaacLab to MuJoCo) where the underlying robot model is the
same but engine-level details (contact solvers, integrators, ac-
tuator models, numerical tolerances) may differ. While training
with one simulator, evaluating in another, and then deploying
the policy in the real world has been shown to work with
humanoid robots (7)), this approach still needs validation for
quadrupeds and other mobile robots.

Studying sim-to-sim transfer isolates engine-level fail-
ure modes and enables controlled diagnostics and ablations
(timestep, contact model, actuator differences) that are dif-
ficult to perform on hardware. Prior quadruped and loco-
motion works show the value of combined sysID + robust
training pipelines; residual/adaptation methods and represen-
tation learning provide the leading methodological families
to compare against when proposing new cross-sim adaptation
schemes.

Helpful documentation: A variety of resources informed
this project’s approach to sim-to-sim transfer for quadruped
locomotion. The IsaacLab Sim-to-Sim documentation (8} pro-
vides the core methodology for reproducing policies across
different physics engines. The Train-a-Robot tutorials (9)
in the IsaacLab documentation detail the training pipeline,
parallel environment setup, and policy deployment workflow.
NVIDIA’s technical report (10) on Sim-to-Real transfer with
the Spot quadruped offers practical insights into policy struc-
ture, curriculum design, and robustness considerations that are
also relevant to sim-to-sim transfer. Finally, the comparative
analysis of contact models in robotics (11) helps with under-
standing discrepancies between PhysX and MuJoCo in terms
of how friction, contact, and normal forces influence locomo-
tion. Collectively, these references shape the experiments and
comparisons presented in this work.

III. SIMULATOR DIFFERENCES
A. Constraint Solvers in Robotics Simulation

Constraint solvers play a critical role in robotic simulation
by enforcing the kinematic and dynamic relationships that gov-
ern a robot’s motion, such as joint couplings, actuator limits,
and constraints at contacts. These solvers ensure that simulated
robots behave in accordance with physical laws despite the
discretizations and numerical approximations inherent in real-
time simulation. Constraint solvers strongly affect the stability
of control policies, and an inaccurate constraint enforcement
during training of the control policy could lead to unrealistic
robot behaviors that do not transfer from simulation to the
real-world.

Modern robotics simulators, including NVIDIA PhysX
(used in Isaac Lab) and MuJoCo, adopt different constraint-
solving paradigms that reflect a trade-off between compu-

tational efficiency and physical accuracy. PhysX employs
iterative solvers such as the Projected or Temporal Gauss—
Seidel methods (12;13)), which resolve constraints sequentially
and are well-suited for massively parallel, GPU-accelerated
simulation, albeit with limited precision in contact dynamics.

In contrast, MuJoCo formulates contact and joint constraints
as a mixed linear complementarity problem (mLCP) (145 [15)),
solved using Newton-type methods that enforce all constraints
simultaneously, resulting in smoother and more physically
consistent behaviors at greater computational cost. Conse-
quently, PhysX is typically preferred for large-scale rein-
forcement learning experiments requiring thousands of parallel
environments, while MuJoCo is often chosen for high-fidelity
analysis and control policy validation where accurate contact
modeling is paramount (16} [17).

One of the most significant differences between IsaacLab
(which utilizes NVIDIA’s PhysX engine) and MuJoCo is
their formulation of multi-body dynamcis. PhysX operates on
maximal coordinates, where each link in a robot is treated as
an independent rigid body with six degrees of freedom (DOF).
Joints are enforced as algebraic constraints that remove DOFs
between bodies, typically solved via Projected Gauss-Seidel
(PGS) or Temporal Gauss-Seidel (TGS) iterative solvers (18)).
This approach allows for scalability in complex environments
but introduces the potential for the robot’s limbs to separate
slightly at the joints, if constraints are momentarily violated
under high-impulse conditions.

In contrast, MuJoCo utilizes generalized coordinates (also
known as reduced coordinates), modeling the robot as a
branching kinematic tree where the number of degrees of
freedom exactly matches the number of generalized velocities
(19). In this formulation, joint constraints are implicit in the
equations of motion, rendering joint separation mathematically
impossible. For a Reinforcement Learning (RL) policy trans-
ferring from IsaacLab to MuJoCo, this discrepancy manifests
as a change in the effective stiffness of the system; a policy
may exploit the subtle compliance and damping provided by
PhysX’s constraint relaxation, failing when applied to the
theoretically rigid kinematic chains of MuJoCo (20).

B. Contact Modeling

The different handling of contact dynamics presents a
potential reality gap in sim-to-sim transfer. IsaacLab’s PhysX
backend predominantly employs a hard contact model based
on the Linear Complementarity Problem (LCP). This formula-
tion enforces strict non-penetration constraints, causing contact
forces to act discontinuously. This means instantly preventing
overlap the moment surfaces touch (18]).

Conversely, MuJoCo employs a soft contact model for-
mulated as a convex optimization problem, where contacts
are treated as constraints with regularized stiffness (21). This
allows for physically plausible deformation at the contact
surfaces, generating restoring forces proportional to the pen-
etration depth. While this convexity ensures a unique inverse
dynamics solution and improves solver stability during the
random exploration phases of RL, it fundamentally alters the

impulse response of the system. A policy trained in IsaacLab
may learn to rely on the instantaneous, rigid reaction forces
of the LCP solver for locomotion stability. When transferred
to MuJoCo, the same control actions may induce unexpected
oscillations or “sinking” behaviors due to the compliant nature
of the soft contact constraints.

C. The Best of Both

To get the best of both worlds, we can approach the problem
of training a control policy for the ANYmal-C by first using
a massively parallelized GPU-enhanced Reinforcement Learn-
ing approach using IsaacLab. Then the policy can be deployed
onto the robot in MuJoCo to analyze the physical stability
of the policy. Iteration between IsaacLab policy training and
MuJoCo deployment and evaluation provides fast training with
physically accurate evaluations. This gives us the opportunity
to test and refine the policy before a real-world deployment,
minimizing the potential for damage to the real hardware or
the surrounding environment.

IV. PROBLEM FORMULATION

We formulate quadruped locomotion as a partially observ-
able Markov decision process (POMDP). The full simulator
state includes base pose and velocity, joint configurations,
contact forces, frictional interactions, ground geometry, and
physics engine parameters; however, the policy observes only
a subset of this information. Following standard practice in
legged locomotion RL, we train a policy using the observed
state as if it were Markov, relying on the policy’s internal
representation to manage unobserved contact dynamics and
other physics engine specific effects. In the sim-to-sim setting,
these unobserved parameters differ across physics engines
(e.g., contact solvers, actuator models, numerical integration
tolerances) and are a primary source of policy transfer degra-
dation.

Therefore, We approximate the solution as an Markov
Decision Process (MDP) defined by the tuple

'M = (S’ ‘A77D7r7 77 D)?

where:

o State (observation) vector S C R*® (for the flat envi-
ronment) represents the observations of the robot at each
timestep, including:

— Base linear and angular velocities in the robot frame,
Vlin; Vang € R3,

— Projected gravity vector in the base frame,

— Joint positions and velocities relative to default po-
sitions,

— Command vector ¢ € R? (X/Y linear velocity and
yaw rate),

— Previous actions a;_1

« Action vector A C R'2 corresponds to the joint position
targets relative to the default joint positions:

a; € [-1,1]'* (scaled by the action scale).

o Transition dynamics P(s;;1]|s¢,a;) are defined by the
simulator in which the policy executes (IsaacLab during
training; MuJoCo during evaluation), including rigid-
body dynamics, contact, and friction, with randomized
parameters such as base mass. In the sim-to-sim case, P
differs across simulators.

o Reward function r : Sx.A — R is composed of multiple

terms:
Ty = E wiri(staat)v
i

where the terms include:

— Linear velocity tracking in the XY plane (exponen-
tial),

— Yaw rate tracking (exponential),

— Z-velocity and angular velocity penalties,

— Joint torque and acceleration penalties,

— Action rate penalty,

— Feet air-time reward (to encourage stepping/trotting
rather than shuffling/skidding),

— Undesired contact penalty,

— Flat orientation penalty.

o Termination conditions D are defined by:

— Time-out: episode length reaches the maximum al-
lowed steps Tiax-

— Fall / crash: any contact force on the base link
exceeds a threshold Fy,e > 1.0.

« Discount factor v € [0, 1] is used for cumulative return
calculation over the episode. This is set based on the
parameters described in Section

V. SYSTEM OVERVIEW
A. Simulation Hardware and Software Setup

All training, simulation, and evaluation, is performed on a
dedicated host machine with an RTX 4090 GPU with 32 GB
of RAM. IsaacLab version 2.3.0 is used with IsaacSim version
5.1.0 for initial policy training. MuJoCo version 3.3.6 is used
for policy evaluation in an alternative simulation environment.
Data is collected from both simulation environments for com-
parison during policy evaluations.

B. Simulated Quadruped Model

The ANYmal-C quadruped robot, shown in Figure [T} is
used for this sim-to-sim experiment and performance char-
acterization. For IsaacLab, the robot is used in the standard
configuration provided from Nvidia’s website (22). For de-
ployment in MuJoCo, the configuration used comes from
the MuJoCo Managerie repository (23). These models are
intended to match the real hardware specifications. Table
shows the joint configurations for the quadruped. The same
joint naming convention is used for both simulators, though
the order of the joints is different so we re-order those in our
scripts to align them. MuJoCo groups the joints by leg (e.g.
LF leg, RF leg) and IsaacSim orders them by type (e.g. all
HAA, all HFE).

TABLE I
ANYMAL-C JOINT NAMES AND FUNCTIONS

Joint Name Body / Leg Function / Motion
LF_HAA Left Front Hip Hip Abduction / Adduction
LF_HFE Left Front Thigh Hip Flexion / Extension
LF_KFE Left Front Shank Knee Flexion / Extension
RF_HAA Right Front Hip Hip Abduction / Adduction
RF_HFE Right Front Thigh Hip Flexion / Extension
RF_KFE Right Front Shank Knee Flexion / Extension
LH_HAA Left Hind Hip Hip Abduction / Adduction
LH_HFE Left Hind Thigh Hip Flexion / Extension
LH_KFE Left Hind Shank Knee Flexion / Extension
RH_HAA Right Hind Hip Hip Abduction / Adduction
RH_HFE Right Hind Thigh Hip Flexion / Extension
RH_KFE Right Hind Shank Knee Flexion / Extension

VI. SOLUTION APPROACH

To leverage the complementary strengths of modern physics
simulators, our approach combines IsaacLab’s massively par-
allel, GPU-accelerated reinforcement learning framework with
MuJoCo’s high-fidelity physics simulation. First, we train a
control policy for the ANYmal C quadruped in IsaacLab,
exploiting its ability to simulate thousands of environments
concurrently to achieve rapid policy convergence. The trained
policy is then deployed in MuJoCo to evaluate its physical
realism, stability, and contact dynamics under a more accu-
rate constraint formulation. By iteratively alternating between
policy training in IsaacLab and validation in MuJoCo, the con-
troller can be refined before real-world deployment, reducing
the sim-to-real gap and improving overall policy robustness.

A. Training Configuration and Reinforcement Learning Setup

The locomotion policy for the ANYmal-C quadruped was
trained using the RSL-RL (24) framework within IsaacLab.
Training was based on the Proximal Policy Optimization
(PPO) algorithm (235), which optimizes a clipped surrogate
objective to ensure stable on-policy learning:

LCLIP(Q) =E, {min (rt(a)/it, clip (r¢(0),1 —¢,1+¢) At)J ,
|y

mo(atlse) js the probability ratio between the

Togq (at|se) R
new and old policies, and A, is the generalized advantage
estimate (GAE) computed using A = 0.95 and vy = 0.99.

where r,(0) =

B. Training Environment and Parameters

Training is performed in IsaacLab using GPU-parallelized
simulation with 4096 environments running concurrently. We
used the flat terrain policy, AnymalCFlatPPORunnerCfg,
which is optimized for smoother, planar surfaces with smaller
networks ([128, 128, 128]) and reduced training iterations for
faster convergence. See the full config in the Appendix [I0]

Our configuration uses the following PPO hyperparameters:

o Number of environment steps per update: 24
o Number of learning epochs per iteration: 5

¢ Mini-batches per epoch: 4

o Learning rate: 1 x 103 (adaptive schedule)
o Entropy coefficient: 0.005

Base Position X
RMS Error: 0.4137 m RMS Error: 0.4587 m

20

Position X (m)
Position Y (m)

IsaacSim
0 MuJoCo 4

10
Time (s)

15 25 0 5 10

Base Position Y

Base Position Z

0.60 (RMS Error: 0.0101 m

IsaacSim
MuJoCo

058

0.56

Position Z (m)

052

0.50
IsaacSim

MuJoCo

15 25 0 5 10

Time (s)

15
Time (s)

Fig. 2. Base position results for the simulation over 25 seconds. MuJoCo’s results are dashed lines and IsaacLab’s are straight lines. The drift between
x-y directions is fairly comparable between simulators but the drift grows over time resulting in RMS errors of ~ 0.41m for X and ~ 0.46m for Y. The
oscillation in the Z direction shows similar phase between the two simulators, with a small RMS error. However the amplitude is larger in MuJoCo than

IsaacLab, perhaps due to less effective damping.

o Value loss coefficient: 1.0
e Clipping parameter: € = 0.2
e Maximum gradient norm: 1.0

Training was run for a maximum of 300 iterations for flat-
ground tasks, saving checkpoints every 50 iterations. This took
approximately 11 minutes. The actor and critic networks used
the Exponential Linear Unit (ELU) activation and separate
hidden-layer architectures. The model size is 40,844 parame-
ters.

C. Policy Transfer Between Simulators

Our solution follows a sim-to-sim transfer pipeline between
IsaacLab and MuJoCo for the ANYmal-C quadruped robot. To
ensure cross-simulator compatibility, we apply domain adapta-
tion steps including matching simulation frequencies (200 Hz
physics, 50 Hz control), consistent gravity and integrator
settings, and joint order remapping between the two models.
The trained policy outputs joint position offsets relative to a
nominal stance; these are reordered and directly applied to
MuJoCo’s position actuators. This setup enables us to evaluate
the learned controller’s physical stability and generalization
under MuJoCo’s distinct constraint solver and contact model,
allowing for iteration between training in IsaacLab and testing
in MuJoCo until satisfactory transfer performance is achieved.

The disparity between the constraint solver in PhysX and
the actuator dynamics in MuJoCo required a modified control
strategy. While the training environment used a nominal stiff-
ness of K, = 40.0, the explicit MuJoCo simulation required
a higher stiffness (), = 100.0) to prevent catastrophic insta-
bility. To ensure stable deployment of the IsaacLab-trained
policy in the MuJoCo environment, a first-order low-pass
filter (exponential moving average) was applied to the policy’s
action outputs. While the policy was trained in IsaacLab to
output raw joint position targets at 50 Hz, direct application
of these high-frequency commands in MuJoCo resulted in
significant instability. To mitigate this instability, the action
commands were smoothed using a coefficient o« = 0.2 (a; =
a-m(s¢) + (1 —) - as—1) which was determined empirically.

This filtering served as a necessary domain adaptation step to
bridge the gap between the training simulation from IsaacLab
and the target deployment environment in MuJoCo.

VII. RESULTS

We evaluate sim-to-sim policy transfer performance by com-
paring joint trajectories produced by the same reinforcement
learning controller when executed in IsaacLab (PhysX) and
MuJoCo. The analysis focuses on joint positions, velocities,
and the corresponding tracking errors for all twelve actuated
joints on the ANYmal-C quadruped: hip abduction/adduction
(HAA), hip flexion/extension (HFE), and knee flexion/exten-
sion (KFE) for each leg (see Table [).

A. Base Position

Figure [2] shows the base position results over a 25 second
simulation playback. The policy produces similar forward and
lateral motion in the two simulators. The x and y positions
track similarly wth a small drift beginning to accumulate over
time resulting in RMS error of ~ 0.41m in X and ~ 0.46m
in Y. In the Z-direction, the RMS error is minimal, ~ 0.01m.
The oscillations from the gait are nearly in phase and similar
in amplitude, though we see higher amplitudes in MuJoCo
than IsaacSim/IsaacLab.

B. Contact Forces

Figure 3| shows the contact forces in the Z-direction for both
simulators. MuJoCo reports contact forces in the -Z direction.
To make for easier visual comparison, we take the absolute
value of the MuJoCo contact forces so they can be plotted on
the positive scale. Here the policy seems to transfer the timing
of the contacts (e.g. stance and swing) quite well, but the load
distribution appears to differ quite significantly. Given that the
contact models are different between the two simulators, this
is not surprising because differences in stiffness, damping, and
friction, can translate to differences in the way the load shifts
from one leg to another.

What does come as a surprise is the difference in RMS
error between the symmetrical feet of the robot. The left

LF Foot Contact Force (Z)

350 (RS Error: 141,58 N

300

IsaacSim
MuJoCo

150

Force (N)

100

0 ITIANTIESLRR-RIALLIGTH R (BRI IRETIHE B R A IULITHE S LR LA RI IR IR AR LR T4

0 5 10 15 20 25
Time (s)

RF Foot Contact Force (Z)

RMS Error: 165.72 N

IsaacSim
MuJoCo

600

400

300

Force (N)

200

0 5 10 15 20 25

LH Foot Contact Force (Z)

700
RMS Error: 189.67 N

600

IsaacSim
MuJoCo

500

400

Force (N)

200
100

0 | RATRERRTELEATICLUARAT RSB IAD R AR TR E P A~ IDAR AR LR AR DR AR P ARV OU PRI U RR TR T R

0 5 10 15 20 25
Time (s)

RH Foot Contact Force (Z)

RMS Error: 216.32 N

IsaacSim
MuJoCo

800

Fig. 3. Contact forces for all 4 feet in the Z-direction. +Z is up in both simulators, but the contact forces are computed differently. MuJoCo’s contact
forces are reported in the -Z direction and IsaacSim/IsaacLab’s are reported in the +Z direction. We flip the sign of MuJoCo’s contact forces to make this
comparison visually easier to understand. The max forces possible on all feet are higher in IsaacSim/IsaacLab, sometimes by 100s of Newtons. Also of note
is the asymmetry in contact force load between right and left front legs and right and left hind legs, indicating model discrepancies.

foot and right foot have differing RMS errors, and differeing
peak contact force amplitudes even within the same simulator.
For example, the IsaacSim/IsaacLab data shows periodic peak
contact forces of 400N for the right front foot and only 340N
peak periodic contact forces for the left front foot. Mujoco data
shows a similar discrapancy between periodic peak contact
forces between the left and right front legs, 300N to 275N
respectively. We also see especially high error on the right
hind leg (RH) which shows an RMS error 26N higher
than the left hind leg (LH) indicating a potential asymmetry
somewhere in the model. It is not clear whether this results
from a robot model asymmetry, a contact force, or dynamics
model difference.

~
~

C. Joint Positions

The left side of Figure [shows the aggregate joint posi-
tion error distribution. Most of the joint position errors are
within the range of -0.25 to 0.25 radians. The mean error
is & —0.011 rad, the standard deviation is = 0.239 rad(=
13.7deg), and the median is —0.004rad. The error is
mostly centered near zero but with long and heavy tails. On
average, the policy reaches very similar configurations in both
simulators but with non-negligible variability, occasionally

~
~

producing large errors likely corresponding to specific joints
or phases where the model mismatch is most influential.

The right side of Figure 4] shows the aggregate joint position
errors by joint. Here we see that hip flexion and extension
joints are the primary sources of configuration mismatch,
while the hip abduction/adduction joints are comparatively
well aligned. The knee joints fall somewhere in the middle
of those two in terms of their comparative alignment. With
the hip flexion and extension (HFE) joints, we see biases
where the medians are significantly below zero and there are
long negative tails. These joints strongly control the leg swing
and stance angle which are impacted by ground contact and
base pitch so this may be another impact of cross simulator
discrepancies in contact force, friction, or dynamics models.

In Figure [} the top plot shows the RMS joint position error
over time and the bottom plot shows the maximum absolute
joint position error over time. The RMS error over all joints
stays in the 0.15 — 0.40 rad range, with peaks at the start due
to the initialization of the robot’s position. The max absolute
error at each time step ranges from about 0.2—1.3 rad early on,
but stabilizes after start-up below 1.0 rad. Both errors exhibit
strong periodic structure correlated to the gait cycle of the
quadruped. The stable periodic nature of the error indicates

Joint Position Error Distribution
1

Mean: -0.0108 rad

Std: 0.2393 rad

Median: -0.0043 rad

95th %9ile: 0.5004 rad

=== Zero error

600

500 "

IS
IS}
S}

Frequency

@
=3
S)

100

-0.75 -0.50 -0.25

Error (rad)

0.00

Error (rad)

Joint Position Error by Joint

0.50 IF s

0.25

mﬁ l ; ﬂ S I ; l
& T L

-0.25

-0.50

-0.75

-1.00 F 5
T T A AT A AT A A
&7 7 &7 &7 &7 R &7 &7 &7 7 &7 &7

Fig. 4. Joint position error distribution (left) and the per joint position error (right). The largest variance in joint errors occurs for the hip flexion and extension
joints. The knee flexion joints see less variance than the hip flexion joints, but still have higher errors and variance overall than the hip adduction/abduction

joints.

that the cross simulation error is neither drifting, nor growing
unbounded, and is likely tied just to the gait cycle of the
quadruped.

The quantitative joint tracking errors are summarized in
Figure[6] Across all twelve joints, the root-mean-square (RMS)
position error ranges from 0.07 rad (best, RH_HAA) to 0.40
rad (worst, RH_HFE). Errors are smallest for the abduction/ad-
duction joints, and largest for the flexion/extension joints,
likely because they are heavily influenced by contact forces.
These results suggest that policy transfer is highly sensitive to
discrepancies in contact modeling.

Figure [/| shows joint position trajectories over a 25-second
roll out in both simulators. The IsaacLab traces (solid lines)
and MuJoCo traces (dashed lines) generally follow consistent
periodic patterns, indicating that the control policy learned
in IsaacSim/IsaacLab produces stable locomotion when trans-
ferred to MuJoCo without fine-tuning. However, systematic
offsets are visible for several joints, particularly the hip and
knee flexion joints, which suggests differences potentially in
contact or dynamics models, or actuator behavior, between the
two physics engines.

D. Joint Velocities

Joint velocity comparisons, shown in Figure [8] highlight
the same periodic structure but with increased amplitude in
MuJoCo, with the exception of the RH_KFE joint where
IsaacLab/IsaacLab shows higher amplitudes. The velocity pro-
files track each well with peaks and zero-crossings lining
up as well as similar amplitudes. Larger differences exist
at startup likely due to initialization differences, but during
steady gait the velocity profiles match quite well. The only
exception is the LF and RF hip abduction/adduction joints
which see significantly higher velocities in MuJoCo than in
IsaacSim/IsaacLab. The RF_HFE and RF_KFE joints also see
higher velocities in MuJoCo than IsaacLab/IsaacSim, suggest-
ing the policy has asymmetrical performance when transferred
from IsaacSim/IsaacLab to MuJoCo.

E. Results Summary

Overall, the transferred policy exhibits qualitatively cor-
rect gait cycles and stable locomotion in MuJoCo, despite
moderate degradation in tracking precision. The joint-level
deviations remain bounded and periodic, confirming that the
control structure learned in IsaacSim/IsaacLab generalizes to a
different physics solver without catastrophic failure. However,
the low-level dynamics are not particularly well-matched as
the contact forces differ substantially and larger joint space
errors occur in the hip flexion and extension joints. These
discrepancies are tolerated well enough for the robot to walk
in both simulators, but how the robot walks in each can differ
on a per joint basis.

VIII. FUTURE WORK

This work demonstrated a basic characterization of the
locomotion policy transfer of a quadruped on flat ground.
Characterizing the policy transfer on rough or uneven terrain
could provide additional insights.

IX. CONCLUSION

This work demonstrates that sim-to-sim transfer of a PPO-
trained ANYmal-C locomotion policy from IsaacLab to Mu-
JoCo is feasible, but reveals meaningful discrepancies arising
from differences in physics engine assumptions. Although the
transferred controller maintains stable gait cycles and achieves
qualitatively consistent locomotion, systematic variations oc-
cur in joint positions, joint velocities, and especially contact
forces, with notable asymmetries across symmetric limbs.
These findings highlight that even when robot models are
matched, engine-level differences in contact solvers, actuator
dynamics, and integration schemes significantly influence low-
level behavior. Sim-to-sim transfer thus serves as a valu-
able diagnostic tool for understanding—and ultimately nar-
rowing—the sim-to-real gap. Future work should investigate
residual action correction, system identification for cross-sim
alignment, domain adaptation strategies, and RL architectures
explicitly designed to generalize across physics engines, with

RMS Joint Position Error Over Time

0.4

0.3

RMS Error (rad)

0.2

0.1

0.0

0 5 10 15 20 25
Time (s)

Maximum Absolute Joint Position Error Over Time

12

1.0

0.8

0.6

Max Abs Error (rad)

04
0.2

0.0

Time (s)

Fig. 5. RMS (top) and Max Absolute (bottom) errors for joint positions over 25 seconds of simulation. The RMS errors represents overall joint position
disagreement between the two simulators at each moment in time. The periodic pattern tracks with the gait cycle. It is likely that the peaks are occurring
when the leg swing occurs because there’s less contact, and thus less constraint. The valleys, where the error is minimized, are likely due to the stanced
phase where the robots feet are planted and thus more constrained. For the bottom plot of maximum absolute errors, we see the worst case error at different
moments in time. Both forms of joint position error appear stable and do not appear to be growing over time.

the longer-term goal of improving the robustness of real-world
quadruped locomotion.
CONTRIBUTIONS AND RELEASE
The authors grant permission for this report to be posted
publicly.
ACKNOWLEDGMENT

Thank you to the Collaborative Al and Robotics Lab at the
University of Colorado Boulder for the generous donation of
GPU resources for this project.

)

Error (rad;

LF_HAA Error LH_HAA Error
02 0.00 —4 03

005 02
01
00 —f1 5 -015 5 oo

o &

-0.20 -0.1

0.25 0.2

} jyme (),,.,, . (SE," Time)
g 00 A’Xlx'['\mili’l‘l'\v l#\l‘[!\r"liml IH\\ l”“\]‘ f g z; “‘ I HH\ ‘”W W \\‘[\ ‘Hr"“ M\[l li¥ HW;‘ I
Tine 9 - _ . (:" nlxiim Tine 9
T me W \H}l” I W W “j H(‘" \H‘ :

Fig. 6. RMS errors for all 12 joints over 25 seconds of simulation replay. IsaacSim/IsaacLab results are shown in pink (solid lines) and MuJoCo results are
shown in brown (dashed lines).

RF_HAA Position

~—— IsaacSim

~~ MuJoCo

LH_HAA Position

ZIZ3EC

LF_HAA Position

et

oot

S

ailbintishesren

)

Ay

- 5=

(peJ) uonisod

25

Time (s)

10
LH_HFE Position

25

20

Time (s)

10
LF_HFE Position

=T

Time (s)

RH_HAA Position

w0
S

* 3
S =]

(pe1) uomisod

25

20

Time (s)

10

LF_KFE Position

25

20

Time (s)

10
RH_HFE Position

on

Time (s)
RF_HFE Positi

=
=

(pei) uomsod

iy
|

i
il

Time (s)

RH_KFE Position

20 25

Time (s)

10
RF_KFE Position

25

20

Time (s)

LH_KFE Position

0.6

i

i

!

Fy ey
\
|

(pes) uonisod

25

20

Time (s)

10

ime (s)

T

Time (s)

Fig. 7. Position for all 12 joints over 25 seconds of simulation replay. IsaacSim/IsaacLab results are shown in pink (solid lines) and MuJoCo results are

shown in brown (dashed lines).

ty

RF_HAA Veloci

ity

LH_HAA Velocif

ty

LF_HAA Veloci

~ o

(s/pes) Auoolan

Time (s)

Time (s)

Time (s)

ity

LH_HFE Veloci

ity

LF_HFE Veloci

ity

RH_HAA Veloci

~

- o

(sypei) oo

Time (s)

Time (s)

Time (s)

ity

LF_KFE Veloci

ity

RH_HFE Velocif

ity

RF_HFE Veloci

5.0

-75

-10.0

Time (s)

Time (s)

Time (s)

ity

RH_KFE Veloci

ty

RF_KFE Veloci

ity

LH_KFE Velocif

o w o

S & 8
D

(s/pe1) Awoolep

g v o
S o w8
D

(s/pei1) Awoolon

0
T

-10.0

Time (s)

Time (s)

Time (s)

IsaacSim/IsaacLab results are shown in pink (solid lines) and MuJoCo results are

8. Velocities for all 12 joints over 25 seconds of simulation replay.

Fig

shown in brown (dashed lines)

APPENDIX

@configclass
class AnymalCRoughPPORunnerCfg(RslRlOnPolicyRunnerCfg) :

num_steps_per_env = 24

max_iterations = 1500

save_interval = 50

experiment_name = "anymal_c_rough"

policy = RslR1PpoActorCriticCfg(
init_noise_std=1.0,
actor_obs_normalization=False,
critic_obs_normalization=False,
actor_hidden_dims=[512, 256, 128],
critic_hidden_dims=[512, 256, 128],
activation="elu",

)

algorithm = RslR1PpoAlgorithmCfg (
value_loss_coef=1.0,
use_clipped_value_loss=True,
clip_param=0.2,
entropy_coef=0.005,
num_learning_epochs=5,
num_mini_batches=4,
learning_rate=1.0e-3,
schedule="adaptive",
gamma=0.99,
lam=0.95,
desired_k1=0.01,
max_grad_norm=1.0,

)

@configclass
class AnymalCFlatPPORunnerCfg (AnymalCRoughPPORunnerCfqg) :
def _ post_init__ (self):

super () .__post_init__ ()

self.max_iterations = 300

self.experiment_name = "anymal_c_flat"

self.policy.actor_hidden_dims = [128, 128, 128]

self.policy.critic_hidden_dims = [128, 128, 128]
@configclass

class AnymalCFlatEnvCfg (AnymalCRoughEnvCfq) :
def _ _post_init__ (self):
post init of parent
super () .__post_init__ ()

override rewards

self.rewards.flat_orientation_12.weight = -5.0
self.rewards.dof_torques_l2.weight = -2.5e-5
self.rewards.feet_air_time.weight = 0.5

change terrain to flat
self.scene.terrain.terrain_type = "plane"

self.scene.terrain.terrain_generator = None
no height scan

self.scene.height_scanner = None
self.observations.policy.height_scan = None
no terrain curriculum
self.curriculum.terrain_levels = None

Fig. 9. Configuration for the ANYmal-C PPO policy.

Copyright (c) 2021-2025, ETH Zurich and NVIDIA CORPORATION
All rights reserved.

#

SPDX-License-Identifier: BSD-3-Clause

from __ future__ import annotations

import torch
import torch.nn as nn
from torch.distributions import Normal

from rsl_rl.networks import MLP, EmpiricalNormalization

class ActorCritic(nn.Module) :
is_recurrent = False

def __init__ (
self,
obs,
obs_groups,
num_actions,
actor_obs_normalization=False,
critic_obs_normalization=False,
actor_hidden_dims=[256, 256, 256]
critic_hidden_dims=[256, 256, 256],
activation="elu",
init_noise_std=1.0,
noise_std_type: str = "scalar",
**xkwargs,

if kwargs:
print(
"ActorCritic.__init__ got unexpected arguments, which will be ignored: "
+ str([key for key in kwargs.keys()])
)
super () .__init__ ()

get the observation dimensions
self.obs_groups = obs_groups
num_actor_obs = 0

for obs_group in obs_groups["policy"]:

assert len (obs[obs_group].shape) == 2, "The ActorCritic module only supports 1D observations."

num_actor_obs += obs[obs_group].shape[-1]
num_critic_obs = 0
for obs_group in obs_groups["critic"]:

assert len (obs[obs_group].shape) == 2, "The ActorCritic module only supports 1D observations."

num_critic_obs += obs[obs_group].shape[-1]

actor
self.actor = MLP (num_actor_obs, num_actions, actor_hidden_dims, activation)
actor observation normalization
self.actor_obs_normalization = actor_obs_normalization
if actor_obs_normalization:
self.actor_obs_normalizer = EmpiricalNormalization (num_actor_obs)
else:
self.actor_obs_normalizer = torch.nn.Identity ()
print (f"Actor MLP: {self.actor}")

critic
self.critic = MLP (num_critic_obs, 1, critic_hidden_dims, activation)
critic observation normalization
self.critic_obs_normalization critic_obs_normalization
if critic_obs_normalization:
self.critic_obs_normalizer = EmpiricalNormalization (num_critic_obs)
else:
self.critic_obs_normalizer = torch.nn.Identity ()
print (f"Critic MLP: {self.critic}")

Action noise
self.noise_std_type = noise_std_type

if self.noise_std_type == "scalar":

self.std = nn.Parameter (init_noise_std * torch.ones (num_actions))
elif self.noise_std_type == "log":

self.log_std = nn.Parameter (torch.log(init_noise_std * torch.ones(num_actions)))
else:

raise ValueError (f"Unknown standard deviation type: {self.noise_std_type}. Should be

Action distribution (populated in update_distribution)
self.distribution = None
disable args validation for speedup
Normal.set_default_validate_args (False)

...// code continues.

Fig. 10. Actor Critic definition for the ANYmal-C PPO policy.

"scalar’

or "log’™)

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

REFERENCES

X. B. Peng, M. Andrychowicz, W. Zaremba, and
P. Abbeel, “Sim-to-real transfer of robotic control with
dynamics randomization,” in 2018 IEEE International
Conference on Robotics and Automation (ICRA), 2018,
pp- 3803-3810.

J. Tan, T. Zhang, E. Coumans, A. Iscen, Y. Bai,
D. Hafner, S. Bohez, and V. Vanhoucke, “Sim-to-real:
Learning agile locomotion for quadruped robots,” in
Robotics: Science and Systems (RSS) X1V, 2018.

J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and
P. Abbeel, “Domain randomization for transferring deep
neural networks from simulation to the real world,” in
2017 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2017, pp. 23-30.

Y. Chebotar, A. Handa, V. Makoviychuk, M. Macklin,
J. Issac, N. Ratliff, and D. Fox, “Closing the sim-to-real
loop: Adapting simulation randomization with real world
experience,” in 2019 IEEE International Conference on
Robotics and Automation (ICRA), 2019, pp. 8973-8979.
T. Johannink, S. Bahl, A. Nair, J. Luo, A. Kumar,
M. Loskyll, J. A. Ojea, E. Solowjow, and S. Levine,
“Residual reinforcement learning for robot control,” in
2019 IEEE International Conference on Robotics and
Automation (ICRA), 2019, pp. 6023-6029.

C. Finn, P. Abbeel, and S. Levine, “Model-agnostic
meta-learning for fast adaptation of deep networks,” in
Proceedings of the 34th International Conference on
Machine Learning (ICML), 2017, pp. 1126-1135.

X. Gu, Y.-J. Wang, and J. Chen, “Humanoid-gym:
Reinforcement learning for humanoid robot with zero-
shot sim2real transfer,” arXiv preprint arXiv:2404.05695,
2024.

N. I. Team, “Sim2sim transfer in isaaclab,” https://isaa
c-sim.github.io/IsaacLab/main/source/experimental-fea
tures/newton-physics-integration/sim-to-sim.html, 2024,
accessed: 2025-01-29.

——, “Train a robot in isaaclab,” https://isaac-sim.githu
b.io/IsaacLab/main/source/setup/installation/pip_installat
1on.html#train-a-robot, 2024, accessed: 2025-01-29.
NVIDIA. (2024) Closing the sim-to-real gap: Training
spot quadruped locomotion with nvidia isaac lab.
Accessed: 2025-01-29. [Online]. Available: https://deve
loper.nvidia.com/blog/closing-the-sim-to-real-gap-train
ing-spot-quadruped-locomotion-with-nvidia-isaac-lab/
G. Amador, S. Veer, O. S.-L. Ramos, and N. Rojas,
“Contact models in robotics: A comparative analysis,’
arXiv preprint arXiv:2304.06372, 2023. [Online].
Available: https://arxiv.org/abs/2304.06372

D. Baraff, “Fast contact force computation for nonpene-
trating rigid bodies,” in SIGGRAPH *94, 1994, pp. 23-34.
M. Silcowitz, S. Niebe, and K. Erleben, “Projected
gauss—seidel subspace minimization method for interac-
tive rigid-body dynamics,” in GRAPP/VISIGRAPP 2010,
2010.

[14]

[16]

[17]

[20]

[23]

M. Anitescu and F. A. Potra, “Formulating dynamic
multi-rigid-body contact problems with friction as solv-
able linear complementarity problems,” Nonlinear Dy-
namics, vol. 14, no. 3, pp. 231-250, 1997.

D. E. Stewart and J. C. Trinkle, “An implicit time-
stepping scheme for rigid body dynamics with inelastic
collisions and coulomb friction,” International Journal
for Numerical Methods in Engineering, vol. 39, pp.
2673-2691, 1996.

NVIDIA Corporation, NVIDIA Isaac Sim Physics and
PhysX Documentation, 2025, https://docs.isaacsim.omni
verse.nvidia.com/latest/physics/.

DeepMind Technologies, MuJoCo Physics Engine Doc-
umentation, 2024, |https://mujoco.readthedocs.io/en/stabl
e/l

V. Makoviychuk, L. Wawrzyniak, Y. Guo, M. Lu,
K. Storey, M. Macklin, D. Hoeller, N. Rudin, A. All-
shire, A. Handa et al., “Isaac gym: High performance
gpu-based physics simulation for robot learning,” arXiv
preprint arXiv:2108.10470, 2021.

E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics
engine for model-based control,” in 2012 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Sys-
tems. 1EEE, 2012, pp. 5026-5033.

T. Erez, Y. Tassa, and E. Todorov, “Simulation tools
for model-based robotics: Comparison of bullet, havok,
mujoco, ode and physx,” in 2015 IEEE International
Conference on Robotics and Automation (ICRA). 1EEE,
2015, pp. 4397-4404.

E. Todorov, “Convex and analytically-invertible dynam-
ics with contacts and constraints: Theory and implemen-
tation in mujoco,” in 2014 IEEE International Confer-

ence on Robotics and Automation (ICRA). 1EEE, 2014,
pp. 6054-6061.
NVIDIA. (2025) Robot assets — 1isaac sim

documentation. Accessed: Nov. 5, 2025. [Online].
Auvailable: https://docs.isaacsim.omniverse.nvidia.com/5
.1.0/assets/usd_assets_robots.html

G. DeepMind. (2022) Mujoco menagerie: A collection
of high-quality simulation models for mujoco. Accessed:
Nov. 5, 2025. [Online]. Available: https://github.com/g
oogle-deepmind/mujoco_menagerie

C. Schwarke, M. Mittal, N. Rudin, D. Hoeller, and
M. Hutter, “Rsl-rl: A learning library for robotics re-
search,” arXiv preprint arXiv:2509.10771, 2025.

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and
O. Klimov, “Proximal policy optimization algorithms,”
arXiv preprint arXiv:1707.06347, 2017.

https://isaac-sim.github.io/IsaacLab/main/source/experimental-features/newton-physics-integration/sim-to-sim.html
https://isaac-sim.github.io/IsaacLab/main/source/experimental-features/newton-physics-integration/sim-to-sim.html
https://isaac-sim.github.io/IsaacLab/main/source/experimental-features/newton-physics-integration/sim-to-sim.html
https://isaac-sim.github.io/IsaacLab/main/source/setup/installation/pip_installation.html#train-a-robot
https://isaac-sim.github.io/IsaacLab/main/source/setup/installation/pip_installation.html#train-a-robot
https://isaac-sim.github.io/IsaacLab/main/source/setup/installation/pip_installation.html#train-a-robot
https://developer.nvidia.com/blog/closing-the-sim-to-real-gap-training-spot-quadruped-locomotion-with-nvidia-isaac-lab/
https://developer.nvidia.com/blog/closing-the-sim-to-real-gap-training-spot-quadruped-locomotion-with-nvidia-isaac-lab/
https://developer.nvidia.com/blog/closing-the-sim-to-real-gap-training-spot-quadruped-locomotion-with-nvidia-isaac-lab/
https://arxiv.org/abs/2304.06372
https://docs.isaacsim.omniverse.nvidia.com/latest/physics/
https://docs.isaacsim.omniverse.nvidia.com/latest/physics/
https://mujoco.readthedocs.io/en/stable/
https://mujoco.readthedocs.io/en/stable/
https://docs.isaacsim.omniverse.nvidia.com/5.1.0/assets/usd_assets_robots.html
https://docs.isaacsim.omniverse.nvidia.com/5.1.0/assets/usd_assets_robots.html
https://github.com/google-deepmind/mujoco_menagerie
https://github.com/google-deepmind/mujoco_menagerie

	Introduction
	Related Literature
	Simulator Differences
	Constraint Solvers in Robotics Simulation
	Contact Modeling
	The Best of Both

	Problem Formulation
	System Overview
	Simulation Hardware and Software Setup
	Simulated Quadruped Model

	Solution Approach
	Training Configuration and Reinforcement Learning Setup
	Training Environment and Parameters
	Policy Transfer Between Simulators

	Results
	Base Position
	Contact Forces
	Joint Positions
	Joint Velocities
	Results Summary

	Future Work
	Conclusion

